Extensions 1→N→G→Q→1 with N=C58 and Q=C23

Direct product G=N×Q with N=C58 and Q=C23
dρLabelID
C23×C58464C2^3xC58464,51

Semidirect products G=N:Q with N=C58 and Q=C23
extensionφ:Q→Aut NdρLabelID
C58⋊C23 = C23×D29φ: C23/C22C2 ⊆ Aut C58232C58:C2^3464,50

Non-split extensions G=N.Q with N=C58 and Q=C23
extensionφ:Q→Aut NdρLabelID
C58.1C23 = C2×Dic58φ: C23/C22C2 ⊆ Aut C58464C58.1C2^3464,35
C58.2C23 = C2×C4×D29φ: C23/C22C2 ⊆ Aut C58232C58.2C2^3464,36
C58.3C23 = C2×D116φ: C23/C22C2 ⊆ Aut C58232C58.3C2^3464,37
C58.4C23 = D1165C2φ: C23/C22C2 ⊆ Aut C582322C58.4C2^3464,38
C58.5C23 = D4×D29φ: C23/C22C2 ⊆ Aut C581164+C58.5C2^3464,39
C58.6C23 = D42D29φ: C23/C22C2 ⊆ Aut C582324-C58.6C2^3464,40
C58.7C23 = Q8×D29φ: C23/C22C2 ⊆ Aut C582324-C58.7C2^3464,41
C58.8C23 = Q82D29φ: C23/C22C2 ⊆ Aut C582324+C58.8C2^3464,42
C58.9C23 = C22×Dic29φ: C23/C22C2 ⊆ Aut C58464C58.9C2^3464,43
C58.10C23 = C2×C29⋊D4φ: C23/C22C2 ⊆ Aut C58232C58.10C2^3464,44
C58.11C23 = D4×C58central extension (φ=1)232C58.11C2^3464,46
C58.12C23 = Q8×C58central extension (φ=1)464C58.12C2^3464,47
C58.13C23 = C4○D4×C29central extension (φ=1)2322C58.13C2^3464,48

׿
×
𝔽